Size-mediated tree transpiration along soil drainage gradients in a boreal black spruce forest wildfire chronosequence.
نویسندگان
چکیده
Boreal forests are crucial to climate change predictions because of their large land area and ability to sequester and store carbon, which is controlled by water availability. Heterogeneity of these forests is predicted to increase with climate change through more frequent wildfires, warmer, longer growing seasons and potential drainage of forested wetlands. This study aims at quantifying controls over tree transpiration with drainage condition, stand age and species in a central Canadian black spruce boreal forest. Heat dissipation sensors were installed in 2007 and data were collected through 2008 on 118 trees (69 Picea mariana (Mill.) Britton, Sterns & Poggenb. (black spruce), 25 Populus tremuloides Michx. (trembling aspen), 19 Pinus banksiana Lamb. (jack pine), 3 Larix laricina (Du Roi) K. Koch (tamarack) and 2 Salix spp. (willow)) at four stand ages (18, 43, 77 and 157 years old) each containing a well- and poorly-drained stand. Transpiration estimates from sap flux were expressed per unit xylem area, J(S), per unit ground area, E(C) and per unit leaf area, E(L), using sapwood (A(S)) and leaf (A(L)) area calculated from stand- and species-specific allometry. Soil drainage differences in transpiration were variable; only the 43- and 157-year-old poorly-drained stands had ∼ 50% higher total stand E(C) than well-drained locations. Total stand E(C) tended to decrease with stand age after an initial increase between the 18- and 43-year-old stands. Soil drainage differences in transpiration were controlled primarily by short-term physiological drivers such as vapor pressure deficit and soil moisture whereas stand age differences were controlled by successional species shifts and changes in tree size (i.e., A(S)). Future predictions of boreal climate change must include stand age, species and soil drainage heterogeneity to avoid biased estimates of forest water loss and latent energy exchanges.
منابع مشابه
Testing transpiration controls by quantifying spatial variability along a boreal black spruce forest drainage gradient
One of the biggest challenges in predicting ecohydrologic fluxes is scaling from easily measured variables to more difficult, often emergent patterns and processes. This is especially true in spatially heterogeneous systems such as black spruce (Picea mariana)dominated boreal forests containing excessive and low soil moisture conditions. Traditional hypotheses suggest that transpiration is cont...
متن کاملMechanisms of Soil Carbon Stabilization in Black Spruce Forests of Interior Alaska: Soil Temperature, Soil Water, and Wildfire
and Overview: The likely direction of change in soil organic carbon (SOC) in the boreal forest biome, which harbors roughly 22% of the global soil carbon pool, is of marked concern because climate warming is projected to be greatest in high latitudes and temperature is the cardinal determinant of soil C mineralization. Moreover, the majority of boreal forest SOC is harbored in surficial organic...
متن کاملEffects of stand age and tree species on canopy transpiration and average stomatal conductance of boreal forests
We quantified the effect of stand age and tree species composition on canopy transpiration ( E C ) by analysing transpiration per unit leaf area ( E L ) and canopy stomatal conductance ( G S ) for boreal trees comprising a five stand wildfire chronosequence. A total of 196 sap flux sensors were used on 90 trees consisting of Betula papyrifera Marsh (paper birch; present in the youngest stand), ...
متن کاملForest productivity decline caused by successional paludification of boreal soils.
Long-term forest productivity decline in boreal forests has been extensively studied in the last decades, yet its causes are still unclear. Soil conditions associated with soil organic matter accumulation are thought to be responsible for site productivity decline. The objectives of this study were to determine if paludification of boreal soils resulted in reduced forest productivity, and to id...
متن کاملLeaf area dynamics of a boreal black spruce fire chronosequence.
Specific leaf area (SLA) and leaf area index (LAI) were estimated using site-specific allometric equations for a boreal black spruce (Picea mariana (Mill.) BSP) fire chronosequence in northern Manitoba, Canada. Stands ranged from 3 to 131 years in age and had soils that were categorized as well or poorly drained. The goals of the study were to: (i) measure SLA for the dominant tree and understo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Tree physiology
دوره 32 5 شماره
صفحات -
تاریخ انتشار 2012